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Abstract Cell cycle is controlled at two restriction points, R1 and R2. At both points
the cell will commit apoptosis if it detects irreparable damage. But at R1 an undam-
aged cell also decides whether to proceed to the S phase or go into a quiescent mode,
depending on the environmental conditions (e.g., overpopulation, hypoxia). We con-
sider the effect of this decision at the population level in a spherical tissue {r < R(t)}.
We prove that if the cells have full control at R1, they can manipulate the size of R(t)
to ensure that 0 < c ≤ R(t) ≤ C < ∞; simulations further show that R(t) can be
made nearly stationary. In the absence of such control, R(t) will either increase to ∞
or decrease to 0. The mathematical model and analysis involve a system of PDEs in
{r < R(t)}.
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882 A. Friedman et al.

1 Introduction

A schematic diagram of the eukaryotic cell cycle is given in Fig. 1. DNA is replicated
during S phase (S for synthesis of DNA). Chromosomes condense and segregate in
M phase (M for mitosis). Gap phases G1 and G2 separate S and M phases.

Cell-cycle checkpoints are points in the cell cycle when decisions are made whether
cell-cycle progression continuous or halts. Intuitively, a cell-cycle checkpoint involve
a surveillance mechanism that somehow checks whether the requirements for progres-
sion to the next cell-cycle phase are satisfied and, if not, a mechanism is triggered to
arrest the process.

Figure 1 shows the R1 checkpoint and the R2 checkpoint; these points are also
called ‘restriction’ points. At the checkpoint R1 a cell decides whether to continue to
the S phase, transit to quiescence mode G0, or, in case of irreparable damage, undergo
apoptosis; for modeling of the G1 − S regulatory network about the restriction point
R1 (see Aguda and Friedman 2008). At the second restriction point R2 a cell checks
if the DNA has been correctly duplicated; here again, in case of damage, the cell may
undergo apoptosis.

A cell remains in quiescence phase for a period of time after which it proceeds with
the cell cycle, starting at the beginning of the S phase.

The decisions whether to transit to the G0 phase and how long to remain in this
phase depend on the cell’s microenvironment. In particular, if the microenvironment is
hypoxic (low oxygen level) or overpopulated (by other cells) then a healthy normal cell
will transit into quiescence mode. There are two important genes that control the path-
way to cell proliferation: SMAD and APC. Under hypoxic conditions SMAD shuts off
the pathway to proliferation, while APC does the same thing if the microenvironment
is overpopulated.

Figure 2 shows a basic signaling pathway from overpopulation and hypoxia signals
to cell proliferation, in which APC and SMAD are imbedded. This diagram was devel-
oped by Ribba et al. (2006a,b) and is based on several papers (Fearon and Vogelstein
1990; Hahn and Weinberg 2002; Kanehisa 1997; Kanehisa and Goto 2000).

Figure 3 shows the roles APC and SMAD play at the restriction point R1. Under
hypoxia signal SMAD induces the cell to go quiescence, and APC does the same under
overpopulation signal.

Fig. 1 Phases of the eukaryotic cell cycle. DNA is replicated in S phase. Duplicate chromosomes are
segregated in M phase. G1 and G2 are ‘gap’ phases
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Fig. 2 Schematics (taken from Ribba et al. 2006a) shows how signals of overpopulation and hypoxia are
transmitted through APC and SMAD to block cell proliferation. Arrowhead indicates activation, hammer-
head indicates inhibition
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Fig. 3 Hypoxia signal sensed by SMAD, or overpopulation signal sensed by APC, sends the cell at check-
point R1 into quiescence model G0. A cell remains in G0 for a period of time, after which the cell cycle is
resumed

Cancer is a disease that develops as a result of genes mutation. Typically a cancer is
associated with more than just a few mutations. However, it is believed the initiation
of the disease is caused by just very few mutations. In the case of colorectal cancer it
was suggested in Fearon and Vogelstein (1990), Hahn and Weinberg (2002), Kanehisa
(1997) and Kanehisa and Goto (2000) that the two genes SMAD and APC are the
initiators of the disease.

Ribba et al. (2006a,b) developed a mathematical model of colorectal cancer based
on the regulatory network in Fig. 2 in which tumor suppressors SMAD and APC
are mutated. Their study includes the effects of irradiation therapy and anti-invasive
agents. In their hybrid PDE/discrete model the cell cycle clock time is divided into a
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884 A. Friedman et al.

finite number of blocks, but the time t varies continuously. Although they used PDEs
to describe the growth of cells as function of t , the tumor region is taken as a fixed
region. Their model is spatially multiscale in the sense that it includes gene muta-
tions at the cell level and cells densities in the tumor region; thus the model combines
genetic information with continuous mechanics. The model is also temporally mul-
tiscale as it consider two times: the usual time of tumor growth and the cycling time
of cells, although the cycling time varies in discrete steps. More recently, Friedman
(2007, 2008) developed a mathematical model in which also the cycling time varies
continuously. His model assumes that the tumor’s boundary is a free boundary which
needs to be determined together with the solution of the PDEs.

In this paper we assume that the microenvironment is not hypoxic so that cells con-
tinue growing during all phases of the cell cycle, and SMAD is not sending cells into
quiescence mode. We focus on the effect that APC has on the tissue growth. We view
upregulation of APC as a control mechanism, and make the following simplifying
assumptions:

1. we replace the signaling pathway from APC to cell proliferation by APC alone;
2. We assume that upregulation of APC is unconstrained, i.e., APC is viewed as a

free controller.

Future work should include the complete genetic network and also impose biological
constrains on the expression level of each intermediate gene in the network.

The controller APC tries to make an optimal decision on whether to take the cell
into quiescence mode or let it proceed to the S phase; here, optimality is determined
by homeostasis. If APC is mutated, the cell loses control at R1 so that the probability
of transition to G0 is a fixed number (independent of population density).

In the analysis presented in this paper we assume that all the cells have precisely
the same mutation. For simplicity we assume that the tumor is spherical, occupying a
region �t = {r < R(t)}, where R(t) varies in time. As proved in Friedman (2008),
there exists a unique global-in-time solution to the system of PDEs and free bound-
ary r = R(t) of the multiscale model. An optimal control at the restriction point R1
would be a control which keeps R(t) constant, i.e., in homeostasis. However, as will
be shown by simulations, such a control generally does not exist. Thus instead we
address the question of whether the control at R1 can achieve at least the following
minimal results:

a. R(t) ≥ c > 0 for all t > 0,
b. R(t) ≤ C < ∞ for all t > 0.

It will be shown that if APC is mutated then, in general,

either R(t) → 0 or R(t) → ∞ as t → ∞;

the second case may be interpreted as the onset of cancer (see Remark 3.3). On the
other hand, if APC is not mutated, it has strategies that will result in

0 < c ≤ R(t) ≤ C for all t > 0.
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Cell cycle control at the first restriction point 885

We provide rigorous mathematical proofs to the above statements. Numerical sim-
ulations also show that C/c can be made close to 1, i.e., close to homeostasis.

We conclude the introduction by noting that other multiscale tumor models were
developed by Ayati et al. (2006) and Jiang et al. (2005). In a different context
Nowak and Sigmund (2004) and Komarova (2007) showed how cellular dynamics
is related to genetic dynamics.

A mathematical model of tumor with three populations of cells, namely, prolif-
erating, quiescent, and necrotic cells (but without including cell cycle phases), was
introduced and studied numerically in Pettet et al. (2001); mathematical analysis of
the model appeared in Chen and Friedman (2003), Chen et al. (2005) and Cui and
Friedman (2003a,b).

2 The mathematical model

We introduce the following notation:

p1(r, t, s1) = density of cells in phase G1, s1 ∈ [0, A1];
p2(r, t, s2) = density of cells in phase S and G2, s2 ∈ [0, A2];
p3(r, t, s3) = density of cells in phase M, s3 ∈ [0, A3];
p0(r, t, s0) = density of cells in state G0, s0 ∈ [0, A0];

p4(r, t) = density of necrotic (dead) cells.

Here r = |x |, x varies in the domain �t = {r < R(t)} in R
3.

We denote by w(r, t) the oxygen concentration and by Q(r, t) the density of live
cells which are not in quiescent phase. Due to cell proliferation and death, there is a
velocity field �v(r, t), which is assumed to be common to all the cells. By conservation
of mass,

∂pi

∂t
+ ∂pi

∂si
+ div(pi �v) = λi (w)pi for 0 < si < Ai (i = 1, 2, 3), (2.1)

∂p0

∂t
+ ∂p0

∂s0
+ div(p0�v) = −λ0 p0 for 0 < s0 < A0, (2.2)

∂p4

∂t
+ div(p4�v) = µ1 p1(r, t, A1) + µ2 p2(r, t, A2) − λ4 p4 (2.3)

where λi (w) are growth rates which depend on the oxygen concentration w,

λi (w) > 0 for i = 1, 2, 3, (2.4)

λ0 is the death rate of cells in quiescence mode, λ4 is the clearing rate of dead cells, and
µ1, µ2 are the rates at which cells at R1 and R2, respectively, decide to go into apop-
tosis; the rate parameters λ0, λ4, µ1, µ2 are positive numbers, and µ1 < 1, µ2 < 1.
We are not including in (2.3) cell death of quiescent cells; see however Remark 5.2.

123



886 A. Friedman et al.

We also have:

p1(r, t, 0) = p3(r, t, A3), (2.5)

p2(r, t, 0) = [1 − β(t) − µ1]p1(r, t, A1) + p0(r, t, A0), (2.6)

p3(r, t, 0) = (1 − µ2)p2(r, t, A2), (2.7)

p0(r, t, 0) = β(t)p1(r, t, A1). (2.8)

Note that cell division at the end of the M phase, while increasing the number of
cells does not change their density, so that p1(r, t, 0) = p3(r, t, A3).

Equation (2.6) expresses the assumption that at the end of the G1 phase a fraction
β(t) of the cells goes into quiescence, and a fraction µ1 goes into apoptosis, while the
remaining fraction of cells at the end of the G1 phase as well as the cells at the end
of the quiescence period enter the S phase. The function β(t) is viewed as a control
function, 0 < β(t) < 1 − µ1.

We introduce the total density of each population of life cells:

Qi (r, t) =
Ai∫

0

pi (r, t, si )dsi (i = 0, 1, 2, 3)

and formally set Q4(r, t) = p4(r, t). Then

Q(r, t) ≡
3∑

i=1

Qi (r, t)

is the combined density of cells in phases G1, S, G2 and M . Later on we shall see how
the function β(t) relates to the signals from the microenvironment which are relayed
to the cell by means of APC (in case of overpopulation). We shall then view β(t) as a
functional

β(t) = K [Q](t). (2.9)

Although the control β shall generally depend on (r, t), rather than on t alone, we
assume here, for simplicity, that β depends only on t .

Remark 2.1 The assumption that A0 is constant is not biologically correct. In
Remark 5.2 we shall consider the case where A0 depends on the density Q in a
way similar to (2.9), namely, A0 = A0[Q](t).

We assume that the total density of cells, live and dead, is constant, and for simplicity
take the constant to be 1, so that,

4∑
i=0

Qi (r, t) = const. = 1. (2.10)
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We integrate each of the equations in (2.1) and (2.2) over si ∈ (0, Ai ) and sum
up the resulting equations and (2.3). Using (2.5)–(2.8) we find that all the boundary
integrals resulting from integrating ∂pi/∂si cancel out, so that

4∑
i=0

[
∂ Qi

∂t
+ div(Qi �v)

]
=

3∑
i=1

λi (w)Qi − λ0 Q0 − λ4 Q4 ≡ H( �Q, w). (2.11)

Assuming that �v is radially symmetric, we can write it in the form

�v = v�er where �er = x

r
,

so that

div(�v p) = 1

r2

∂

∂r
(r2vp) if p = p(r);

note that v(0) = 0.
From (2.10), (2.11) we then obtain

div �v = 1

r2

∂

∂r
(r2v) = H( �Q, w). (2.12)

Finally we assume that the oxygen concentration w(r, t) satisfies the diffusion
equation with a positive bounded source h,

− �w + Qw = h, h(r, t) = γ (r, t)(w − w) in �t (2.13)

where w is the average oxygen concentration in a healthy tissue and the source h
represents oxygen transported from the vasculature into the tissue. We prescribe the
boundary condition

w = w on ∂�t (2.14)

and a free boundary condition, which says that the boundary moves with the velocity
of the cells,

d R(t)

dt
= v(r)

∣∣∣
r=R(t)

. (2.15)

We also prescribe initial data

pi

∣∣∣
t=0

= pi0(r, si ) (i = 0, 1, 2, 3), p4

∣∣∣
t=0

= p40(r), R
∣∣∣
t=0

= R0 > 0 (2.16)

that are nonnegative, namely,

inf
0<r<R0,0<s<Ai

pi0(r, s) ≥ 0 (0 ≤ i ≤ 3), inf
0<r<R0

p40(r) ≥ 0.
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888 A. Friedman et al.

The following global existence and uniqueness result for radially symmetric solu-
tions is established in Friedman (2008) in case β is a function of w and Q,

β = K (w, Q). (2.17)

Theorem 2.1 If the pi0 belong to C1(�0×[0, Ai ]), 0 ≤ i ≤ 3, p40 belongs to C1(�0),
pi0 (0 ≤ i ≤ 4) satisfy (2.5)–(2.10), and λi (z) (1 ≤ i ≤ 3) and K (z, Q) belong to
C1 for z ∈ R

1, Q ∈ [0, 1] and γ (r, t) is a continuous function for r ≥ 0, t ≥ 0, then
there exists a unique radially symmetric solution (pi , w, v, R) of (2.1)–(2.8), (2.10),
(2.12)–(2.17) with R(t) in C1[0,∞), and pi ≥ 0 (0 ≤ i ≤ 4).

Remark 2.2 We denote by w∗ the critical concentration of oxygen below which a cell
cannot sustain life. Then it is natural to assume that

λ j (w) > 0 if w > w∗, λ j (w) < 0 if w < w∗. (2.18)

Applying the maximum principle to the solution of (2.13), (2.14) and recalling that
Q ≤ 1 we find that the minimum value of w in �t , say w(x, t), satisfies: 0 < w(x, t)
and

w(x, t) ≥ γ (|x |, t) · (w − w(x, t)). (2.19)

Hence if

w∗ < w min

{
γ

1 + γ

}
(2.20)

then w(x, t) > w∗ so that, by (2.18), the assumption (2.4) is satisfied.
In future work we shall dispense with the assumption (2.20), so that (2.4) will

generally not be satisfied, and there will be a role to play for SMAD. However, such
a model will need to include angiogenesis, that is, the formation of new blood ves-
sels in response to hypoxia signals. The effect of angiogenesis is expressed by taking
γ = γ (r, t, e) in (2.13) where e is the density of endothelial cells. Angiogenesis has
been modeled in the literature quite extensively (see Levine et al. 2001; Mantzaris et al.
2004 and the references therein). By including angiogenesis we then add a system of
PDEs coupled to the system of the present paper via the variable e.

It is interesting to note (as proved in Friedman and Hu 2008) that, without angio-
genesis (i.e., if h = 0 in (2.13)), even if w∗ = 0, that is, even if

λ j (w) > 0 for w > 0, λ j (w) = 0 ( j = 1, 2, 3), (2.21)

then, regardless of the control function β, R(t) ≤ C < ∞ for all t > 0.
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Cell cycle control at the first restriction point 889

3 β(t) constant

For simplicity we first consider the case

λ1(w) = λ2(w) = λ3(w) = const. = λ, (3.1)

The case where λ j = λ j (w) (for i = 1, 2, 3) will be considered in Sect. 6. It is
convenient to introduce the function

p(r, t, s) =

⎧⎪⎨
⎪⎩

(1 − µ2)p2(r, t, s), 0 ≤ s ≤ A2,

p3(r, t, s − A2), A2 ≤ s ≤ A2 + A3,

p1(r, t, s − A2 − A3), A2 + A3 ≤ s ≤ A1 + A2 + A3 ≡ A,

(3.2)

so that

Q(r, t) = 1

1 − µ2

A2∫

0

p(r, t, s)ds +
A∫

A2

p(r, t, s)ds. (3.3)

Note that p(r, t, s) is continuous in s, 0 ≤ s ≤ A. By conservation of mass,

∂p

∂t
+ ∂p

∂s
+ div(p�v) = λp for 0 < s < A, (3.4)

∂p0

∂t
+ ∂p0

∂s
+ div(p0�v) = −λ0 p0 for 0 < s < A0, (3.5)

∂p4

∂t
+ div(p4�v) = µ1 p(r, t, A) + µ2

1 − µ2
p(r, t, A2) − λ4 p4 (3.6)

with

p(r, t, 0) = (1 − µ2)[1 − µ1 − β(t)]p(r, t, A)

+ (1 − µ2)p0(r, t, A0), (3.7)

p0(r, t, 0) = β(t)p(r, t, A). (3.8)

It is natural to assume that the cell remains in quiescent mode for relatively long time,
so that

A0 > A, (3.9)

but, mathematically, this assumption is not necessary. We introduce the volume
integrals
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p̂(t, s) = 4π

R(t)∫

0

r2 p(r, t, s)dr,

p̂0(t, s) = 4π

R(t)∫

0

r2 p0(r, t, s)dr,

p̂4(t) = 4π

R(t)∫

0

r2 p4(r, t)dr.

Integrating (3.4)–(3.6) over �t and using (2.15), we obtain

∂ p̂

∂t
+ ∂ p̂

∂s
= λ p̂ for 0 < s < A,

∂ p̂0

∂t
+ ∂ p̂0

∂s
= −λ0 p̂0 for 0 < s < A0,

∂ p̂4

∂t
= µ1 p̂(t, A) + µ2

1 − µ2
p̂(t, A2) − λ4 p̂4.

From (3.7), (3.8) we also get

p̂(t, 0) = (1 − µ2)[1 − µ1 − β(t)] p̂(t, A) + (1 − µ2) p̂0(t, A0), (3.10)

p̂0(t, 0) = β(t) p̂(t, A). (3.11)

Solving the equations for p̂, p̂0 along the characteristics, we obtain

p̂(t + s, s) = eλs p̂(t, 0) for t > 0, 0 < s < A, (3.12)

p̂0(t + s, s) = e−λ0s p̂0(t, 0) for t > 0, 0 < s < A0, (3.13)

Define

Q̂(t) =
A∫

0

p̂(t, s)ds ≡
A∫

0

R(t)∫

0

4πr2 p(r, t, s)drds;

then

Q̂(t) ≤ total mass of cells in phases G1, S, G2, M ≤ 1

1 − µ2
Q̂(t).

We also define

Q̂0(t) =
A0∫

0

p̂0(t, s)ds ≡
A∫

0

R(t)∫

0

4πr2 p0(r, t, s)drds
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as the total mass of cells in phases G0. If t > A + A0, then, by (3.12), (3.10) and
(3.13),

Q̂(t) =
A∫

0

p̂(t, s)ds

=
A∫

0

eλs p̂(t − s, 0)ds

= (1 − µ2)

A∫

0

eλs ( p̂(t − s, A)[1 − µ1 − β(t − s)] + p̂0(t − s, A0)) ds

= (1 − µ2)

A∫

0

eλs p̂(t − s, A)[1 − µ1 − β(t − s)]ds

+ (1 − µ2)

A∫

0

eλse−λ0 A0 p̂0(t − s − A0, 0)ds,

or, by (3.11),

Q̂(t) = (1 − µ2)

A∫

0

eλs p̂(t − s, A)[1 − µ1 − β(t − s)]ds

+ (1 − µ2)

A∫

0

eλse−λ0 A0β(t − s − A0) p̂(t − s − A0, A)ds. (3.14)

We shall now assume that

β(t) ≡ const. = β, (3.15)

that is, the cells have no (viable) control at R1 over the decision whether to go into
quiescent state or proceed to the S phase. Then, by (3.14), and (3.12), (3.13),

Q̂(t) = (1 − µ2)(1 − µ1 − β)eλA

A∫

0

p̂(t − A, s)ds

+ βe−λ0 A0 eλA

A∫

0

(1 − µ2) p̂(t − A − A0, s)ds

= (1−µ2)(1−µ1−β)eλA Q̂(t − A) + (1 − µ2)βe−λ0 A0 eλA Q̂(t − A − A0),

123



892 A. Friedman et al.

or,

Q̂(t) = α1(β)Q̂(t − A) + α2(β)Q̂(t − A − A0)

where α1(β)=(1−µ2)(1−µ1−β)eλA, α2(β)=(1−µ2)βe−λ0 A0 eλA. (3.16)

We shall assume that

1 < (1 − µ1)(1 − µ2)e
λA < eλ0 A0 . (3.17)

Remark 3.1 The first inequality in (3.17) says that if none of cells go into quiescence
then their density over each cycle increases, that is, Q̂(t) > Q̂(t − A). Indeed, this
follows from (3.16) with β = 0. Similarly, the second inequality in (3.17) says that if
cells go into quiescence and stay there long enough then the total population density
decreases over the period A + A0, that is, Q̂(t) < Q̂(t − A − A0). Indeed, this follows
from (3.16) with β = 1 − µ1.

Lemma 3.1 Under the assumption (3.17) there exists a unique β∗, 0 < β∗ < 1−µ1,
such that (i) if 0 ≤ β < β∗, then

lim
t→∞ Q̂(t) = ∞; (3.18)

(ii) if β∗ < β ≤ 1 − µ1, then

lim
t→∞ Q̂(t) = 0. (3.19)

Proof Clearly α1(β) + α2(β) is monotonically decreasing in β, and from (3.16) it
follows that

α1(β) + α2(β)=(1 − µ2)
(
(1−µ1−β)eλA + βe−λ0 A0 eλA

){
> 1 if β = 0,

< 1 if β = 1 − µ1.

Hence there is a unique β∗ such that

α1(β) + α2(β)

⎧⎨
⎩

> 1 if 0 ≤ β < β∗,
= 1 if β = β∗,
< 1 if β∗ < β ≤ 1 − µ1.

Suppose 0 ≤ β < β∗, so that α1(β) + α2(β) = 1 + δ, δ > 0. Let

M j = inf
j (A+A0)≤t<( j+1)(A+A0)

Q̂(t), j = 1, 2, 3, . . . .

We want to use (3.16). However, (3.16) only enables us to derive estimates on an
interval with a time shift of length A, not A + A0. To obtain estimates on the interval
[2(A + A0), 3(A + A0)], we shall repeatedly use (3.16). First, by (3.16),

Q̂(t) ≥ (1 + δ)M1 if 2(A + A0) ≤ t ≤ 2(A + A0) + A,
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Cell cycle control at the first restriction point 893

and, in particular,

Q̂(t) ≥ M1 for (A + A0) ≤ t ≤ 2(A + A0) + A.

Repeating this procedure with 2(A + A0) + j A < t < 2(A + A0) + ( j + 1)A for
j = 1, 2, . . . , k where k is such that k A > (A + A0), we obtain

Q̂(t) ≥ (1 + δ)M1 for 2(A + A0) ≤ t ≤ 3(A + A0)

Taking “inf” over the interval [2(A + A0), 3(A + A0)] it follows that

M2 ≥ (1 + δ)M1.

Similarly M j ≥ (1 + δ)M j−1 and therefore M j → ∞ as j → ∞.
The case β∗ < β ≤ 1 − µ1 is similar if we replace “inf” by “sup” and 1 + δ by

1 − δ. 	


Theorem 3.2 Assume that (3.17) holds. (i) If 0 ≤ β < β∗, then

R(t) → ∞ as t → ∞;

(ii) if β∗ < β ≤ 1 − µ1, then

R(t) → 0 as t → ∞.

Proof If 0 ≤ β < β∗, then (3.18) holds, and since

Q̂(t) = 4π

A∫

0

⎛
⎝

R(t)∫

0

r2 p(r, t, s)dr

⎞
⎠ ds

= 4π

R(t)∫

0

r2

⎛
⎝

A∫

0

p(r, t, s)ds

⎞
⎠ dr

≤ 4π

R(t)∫

0

r2dr = 4π

3
R3(t),

we conclude that R(t) → ∞ as t → ∞.
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In case β∗ < β ≤ 1 − µ1, we need, in addition to (3.19), to estimate Q̂0(t) and
p̂4(t). We begin with Q̂0. By (3.13), (3.8),

Q̂0(t) =
A0∫

0

p̂0(t, s)ds

=
A0∫

0

e−λ0s p̂0(t − s, 0)ds (assuming that t ≥ A0),

=
A0∫

0

e−λ0sβ(t − s) p̂(t − s, A)ds.

We note that in the last integral β(t − s) is actually a constant β. The argument
used in the present proof, however, can also be used in the proof of Theorem 4.2, in
which case β is not a constant. In order to avoid repeating the same argument we keep
writing here β = β(t − s), and refer to this proof later on.

We take k such that k A < A0 ≤ (k + 1)A. Then, by (3.8), (3.12),

Q̂0(t) =
A0∫

0

p̂0(t, s)ds

<

k∑
j=0

( j+1)A∫

j A

e−λ0sβ(t − s) p̂(t − s, A)ds

=
k∑

j=0

( j+1)A∫

j A

e−λ0sβ(t − s)eλA p̂(t − s − A, 0)ds

=
k∑

j=0

( j+1)A∫

j A

e−λ0sβ(t − s)eλAe−λ(s− j A) p̂(t − A − j A, s − j A)ds

≤
k∑

j=0

(1 − µ1)e
λA Q̂ (t − ( j + 1)A) ,

so that, by Lemma 3.1,

lim
t→∞ Q̂0(t) = 0. (3.20)
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We next estimate p̂4(t):

p̂4(t) = p̂4(0)e−λ4t + µ1

t∫

0

e−λ4(t−τ) p̂(τ, A)dτ + µ2

1 − µ2

t∫

0

e−λ4(t−τ) p̂(τ, A2)dτ

≡ I1 + I2 + I3.

Clearly I1 goes to zero as t → ∞. Next, by (3.12),

I2 = µ1

[t/A]+1∑
j=0

( j+1)A∫

j A

e−λ4(t−τ) p̂(τ, A)dτ

≤ µ1

[t/A]+1∑
j=0

e−λ4t+λ4( j+1)A

( j+1)A∫

j A

p̂(τ, A)dτ

= µ1

[t/A]+1∑
j=0

e−λ4t+λ4( j+1)A

( j+1)A∫

j A

eλ(τ− j A) p̂( j A, A + j A − τ)dτ.

By Lemma 3.1, for any small ε > 0, there is a J = J (ε) sufficiently large such that

Q̂( j A) < ε for all j ≥ J.

Then

I2 ≤ µ1

J∑
j=0

e−λ4t+λ4( j+1)AeλA Q̂( j A) + εµ1

[t/A]+1∑
j=J+1

e−λ4t+λ4( j+1)AeλA

≤ µ1

J∑
j=0

e−λ4t+λ4( j+1)AeλA Q̂( j A) + εµ1e−λ4t eλ4([t/A]+3)A − 1

eλ4 A − 1
eλA

and the last term is bounded by

εµ1
e3λ4 A

eλ4 A − 1
eλA.

Hence

lim sup
t→∞

I2(t) ≤ εµ1
e3λ4 A

eλ4 A − 1
eλA,
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and, since ε is arbitrary, limt→∞ I2(t) = 0. In a similar manner one can show
limt→∞ I3(t) = 0, so that

lim
t→∞ p̂4(t) = 0. (3.21)

Since

Q̂(t) + Q̂0(t) + p̂4(t) ≥ 4(1 − µ2)π

R(t)∫

0

r2 · 1 dr = 4π

3
(1 − µ2)R3(t),

we conclude from (3.19) to (3.21) that

lim
t→∞ R(t) = 0.

	


Remark 3.2 The arguments used in the proof of Lemma 3.1 show that if β = β∗, then

0 < lim inf
t→∞ Q̂(t) ≤ lim sup

t→∞
Q̂(t) < ∞.

Remark 3.3 The case β(t) ≡ const. may arise in a situation where the cell does not
respond to signals from its microenvironment, that is, when both APC and SMAD are
mutated. In this case, Theorem 3.2(i) may be interpreted as the onset of cancer.

4 β(t) as free control

In this section we continue to assume that (3.1) holds, deferring the case of λ j = λ j (w)

for j = 1, 2, 3 to Sect. 5. We also assume that (3.17) holds and wish to show that there
is a control β(t) that depends on the population Q (or rather on Q̂) for which

0 < c ≤ R(t) ≤ C < ∞ for all t. (4.1)

We assume for simplicity that

A0 = m A, m integer ≥ 1. (4.2)

In order to define β(t), we choose any positive constant Q∗ and numbers β, β such
that

0 < β < β∗ < β < 1 − µ1. (4.3)
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Assuming that β(t) has already been determined for t < t0 when t0 = j A ( j integer
≥ 1), we take

β(t) =
{

β for t0 ≤ t < t0 + A if Q̂(t0) ≥ Q∗

β for t0 ≤ t < t0 + A if Q̂(t0) < Q∗.
(4.4)

With this choice of β(t) we can then extend the solution of the free boundary problem
for the pi and R(t) to j A ≤ t ≤ ( j + 1)A. If we set Q̂ j = Q̂( j A), β j = β( j A) then,
by (3.14),

Q̂ j = (1 − µ2)(1 − µ1 − β j−1)e
λA Q̂ j−1 + (1 − µ2)β j−1−meλAe−λ0m A Q̂ j−1−m

(4.5)

and

β j =
{

β if Q̂ j ≥ Q∗

β if Q̂ j < Q∗ . (4.6)

Define

Q̂min = min
(
(1 − µ2)(1 − µ1 − β)eλA Q∗, (1 − µ2)βeλAe−λ0m A Q∗, Q̂1, . . . , Q̂m+1

)
,

Q̂max = max

(
(1 − µ2)βeλAe−λ0m A

1 − (1 − µ2)(1 − µ1 − β)eλA
Q∗,

(1 − µ2)(1 − µ1 − β)eλA

1 − (1 − µ2)βeλAe−λ0m A
Q∗,

(1 − µ2)(1 − µ1 − β)eλA Q∗ + (1 − µ2)βeλAe−λ0m A Q∗, Q̂1, . . . , Q̂m+1

)
.

Note that with the choices of β and β, we have

(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0m A > 1, (4.7)

(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0m A < 1. (4.8)

Lemma 4.1 Assume that (3.17) holds. Then

Q̂min ≤ Q̂ j ≤ Q̂max for 0 ≤ j < ∞. (4.9)

Proof We use induction on j . It is clear that (4.9) is valid for all 1 ≤ j ≤ m + 1.
Suppose that (4.9) holds for up to j −1 where j ≥ m +2. There are only four possible
cases for Q̂ j−1, Q̂ j−m−1:

(i) Q̂ j−1 ≥ Q∗, Q̂ j−1−m ≥ Q∗;
(ii) Q̂ j−1 ≥ Q∗, Q̂ j−1−m < Q∗;

(iii) Q̂ j−1 < Q∗, Q̂ j−1−m < Q∗;
(iv) Q̂ j−1 < Q∗, Q̂ j−1−m ≥ Q∗.
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In case (i) we have, by (4.5), (4.6),

Q̂ j = (1 − µ2)(1 − µ1 − β)eλA Q̂ j−1 + (1 − µ2)βeλAe−λ0m A Q̂ j−1−m,

so that, using (4.8),

Q̂ j ≤
{
(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0m A

}
Q̂max < Q̂max,

whereas, by the two inequalities of case (i),

Q̂ j ≥
{
(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0m A

}
Q̂∗ > Q̂min.

In case (ii) we have, by (4.5), (4.6),

Q̂ j = (1 − µ2)(1 − µ1 − β)eλA Q̂ j−1 + (1 − µ2)βeλAe−λ0m A Q̂ j−1−m,

so that, by the inequality (1 − µ2)βeλAe−λ0m A Q∗ ≤ {
1 − (1 − µ2)(1 − µ1 −

β)eλA
}

Q̂max, we get

Q̂ j ≤ (1 − µ2)(1 − µ1 − β)eλA Q̂max + (1 − µ2)βeλAe−λ0m A Q∗ ≤ Q̂max.

On the other hand, by the inequalities of case (ii),

Q̂ j ≥ (1 − µ2)(1 − µ1 − β)eλA Q̂∗ ≥ Q̂min.

Case (iii) can be treated in a similar way as case (i) using (4.8), and case (iv) is
similar to case (ii). 	


Theorem 4.2 Assume that (3.17) holds and β(t) is defined by (4.4). Then R(t) satisfies
(4.1).

Proof Using Lemma 4.1, one can establish the upper and lower bounds for Q̂(t) for
all time 0 < t < ∞. From the lower bound on Q̂(t) we derive a positive lower bound
on R(t). Using arguments similar to those in the proof of Theorem 3.2 we can also
establish upper bounds on Q̂0(t) and p̂4(t), and therefore R(t) must also be bounded
from above. 	


Remark 4.1 The control function used in Theorem 4.2 depends on the total popula-
tion of cells, Q̂, in the tissue. If APC can control any situation of overpopulation,
then, according to Theorem 4.2, it can ensure that the tissue {r < R(t)} will remain
bounded, without actually dying (i.e., with R(t) ≥ c > 0).
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5 The case of variable λ j (w)

In this section we extend the results of Sects. 3, 4 to the case where λ j (w) are functions
of w, and

λ j (w) belong to C1[0,∞) for j = 1, 2, 3. (5.1)

In this case

∂ p̂

∂t
+ ∂ p̂

∂s
= λ̃ p̂

where

λ− ≡ min
1≤ j≤3

min
(r,t)

λ j (w(r, t)) ≤ λ̃ ≤ max
1≤ j≤3

max
(r,t)

λ j (w(r, t)) ≡ λ+.

It follows that

∂ p̂

∂t
+ ∂ p̂

∂s
≥ λ− p̂, (5.2)

and

∂ p̂

∂t
+ ∂ p̂

∂s
≤ λ+ p̂. (5.3)

Analogously to (3.17) we assume that

(1 − µ1)(1 − µ2)e
λ− A > 1, (1 − µ1)(1 − µ2)e

λ− A < eλ0 A0 (5.4)

and set

α−
1 (β) = (1 − µ2)(1 − µ1 − β)eλ− A, α−

2 (β) = (1 − µ2)βe−λ0 A0 eλ− A. (5.5)

Then there exists a unique β∗−, 0 < β∗− < 1 − µ1 such that

α−
1 (β) + α−

2 (β)

⎧⎨
⎩

> 1 if 0 ≤ β < β∗−,

= 1 if β = β∗−,

< 1 if β∗− < β ≤ 1 − µ1.

Using (5.2) we derive the inequalities p̂(t, s) ≥ p̂(t − s, 0)eλ−s for 0 ≤ s ≤ A,
p̂(t − s, A) ≥ p̂(t − A, s)eλ−(A−s) for 0 ≤ s ≤ A, and then, analogously to (3.16),

Q̂(t) ≥ α−
1 (β)Q̂(t − A) + α−

2 (β)Q̂(t − A − A0).

As in the proof of Lemma 3.1, we can now show that (3.18) holds if β < β∗−, so that
R(t) → ∞ as t → ∞.
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Similarly, if we assume that

(1 − µ1)(1 − µ2)e
λ+ A > 1, (1 − µ1)(1 − µ2)e

λ+ A < eλ0 A0 (5.6)

and set

α+
1 (β) = (1 − µ2)(1 − µ1 − β)eλ+ A, α+

2 (β) = (1 − µ2)βe−λ0 A0 eλ+ A, (5.7)

then exists a unique β∗+, 0 < β∗+ < 1 − µ1 such that

α+
1 (β) + α+

2 (β)

⎧⎨
⎩

> 1 if 0 ≤ β < β∗+,

= 1 if β = β∗+,

< 1 if β∗+ < β ≤ 1 − µ1.

Using (5.3) we can then derive the inequality

Q̂(t) ≤ α+
1 (β)Q̂(t − A) + α+

2 (β)Q̂(t − A − A0),

from which we deduce that, if β∗+ < β < 1 − µ1, then (3.19) holds. One can next
establish (3.20) and (3.21) as before, and thus conclude that R(t) → 0 if t → ∞.

We summarize:

Theorem 5.1 (i) If (5.4) holds and 0 < β < β∗−, then

R(t) → ∞ if t → ∞.

(ii) If (5.6) holds and β∗+ < β < 1 − µ1, then

R(t) → 0 if t → ∞.

As explained in Remark 2.1, case (i) may be interpreted as the onset of cancer.

Remark 5.1 Note that, in general, β∗− < β∗+. It is not clear how R(t) behaves if β is a
constant satisfying β∗− < β < β∗+.

We next turn to extension of Theorem 4.2, assuming that both (5.3) and (5.4) are
satisfied. We define β(t) as in (4.4), but with 0 < β < β∗− ≤ β∗+ < β < 1 − µ1, so
that

(1 − µ1)(1 − µ2 − β)eλ− A + (1 − µ2)βe−λ0 A0 eλ− A > 1, (5.8)

(1 − µ1)(1 − µ2 − β)eλ+ A + (1 − µ2)βe−λ0 A0 eλ+ A < 1. (5.9)
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Lemma 4.1 then extends to this case provided Q̂min and Q̂max are replaced by

Q̂min = min
(
(1 − µ2)(1 − µ1 − β)eλ− A Q∗,

(1 − µ2)βeλ− Ae−λ0m A Q∗, Q̂1, . . . , Q̂m+1

)
,

Q̂max =max

(
(1 − µ2)βeλ+ Ae−λ0m A

1 − (1 − µ2)(1 − µ1 − β)eλ+ A
Q∗,

(1 − µ2)(1 − µ1 − β)eλ+ A

1 − (1 − µ2)βeλ+ Ae−λ0m A
Q∗,

(1 − µ2)(1 − µ1 − β)eλ+ A Q∗ + (1 − µ2)βeλ+ Ae−λ0m A Q∗, Q̂1, . . . , Q̂m+1

)
.

We can now proceed as before to derive the following theorem.

Theorem 5.2 Assume that (5.4), (5.6) hold and β(t) is defined by (4.4) with β, β as
in (5.8), (5.9). Then

0 < c ≤ R(t) ≤ C < ∞ for all t.

Remark 5.2 Up to now we assumed that A0 is constant. Consider the more biologically
appropriate assumption that A0 is a function depending on the microenvironment, say

A0 = A0[Q](t).

If A0 is a continuously differentiable in Q then Theorem 2.1 remains valid with
some minor modifications in the proof; hence unique global solution exists. If APC
is mutated, then A0 = const. and Theorem 3.2 remains valid. Finally, if APC, is not
mutated then, if A0 = A0(Q) is chosen a constant large enough to satisfy the second
inequality in (3.17), then the Theorem 4.2 remains valid.

6 Numerical simulations

The proof of Theorem 5.2 provides an upper bound for C/c, that is, an upper bound
on the oscillations of R(t). In homeostasis R(t) is nearly stationary. In this section we
explore numerically how the choice of the control β(t) can be improved to achieve
nearly stationary R(t). For simplicity we consider the case λ j (w) = λ for j = 1, 2, 3.
We take the parameter values:

λ = ln 2 day−1 ≈ 0.693 day−1, λ0 = 1

10
ln 2 day−1 ≈ 0.0693 day−1,

which corresponds to cell cycle period of 24 h (Brooks and Riddle 1988);

A = 1 day, A1 = A2 = A3 = 1

3
day, A0 = 5 days;

λ0 A0 = 1

2
λA, mλ0 = 1

2
ln 2 ≈ 0.347, and m = 5.
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Since, according to DeBoer and Perelson (2005), death rate is approximately 1
2 of

proliferation rate, we take

µ1 = µ2 = 1

5
.

We finally choose the clearing rate of death cells to be (Fowler 1991)

λ4 = 1

2
day−1.

Note that (3.15) is actually satisfied for µ1 = µ2 = µ in the range 0.16 < µ < 0.29.

We shall simulate the solution of the free boundary problem for the initial values

p0(r, s, 0) = 1

6 1
12 + 7

6 log(2)
(− cos(6πs) + 1), 0 ≤ s ≤ A0

p(r, s, 0) = 1

6 1
12 + 7

6 log(2)
(− cos(6πs) + 1), 0 ≤ s ≤ A.

The subsequent considerations, however, can be applied to any initial data. In the
numerical simulations we use finite difference upwind discretization in space x and s
(dx = ds = A1/128) with forward Euler method in time t (dt = 0.5dx) to solve the
hyperbolic type equations (2.1)–(2.3) with the boundary conditions (2.5)–(2.8). The
velocity �v is obtained by mid-point integration of H : �v = v �er , v = 1

r2

∫ r
0 r2 H( �Q, ω)

(where H( �Q, ω) is given by (2.11)) and (2.10) through several numerical integrations
of pi .

We are going to illustrate several control strategies. We begin with the choice
β(t) =const.= β. According to Theorem 3.2, with

β∗ = 7

20(2 − √
2)

≈ 0.6,

if β < β∗ then R(t) → 0 as t → ∞ and if β > β∗ then R(t) → 0 as t → ∞. This
is illustrated in Fig. 4 with β(t) = β = 0.2, 0.4, 0.6, and 0.8.

For β = 0.6, the trend for the limit of R(t) takes longer time.
The choice β(t) =const. is of course not robust. To derive a robust control we fol-

low the proof of Theorem 4.2, but first choose β(t) for 0 ≤ t ≤ t0 = A0 to be different
from β∗ in order to be in a non-stationary situation at t = t0; we take β(t) = 0.5 for
0 ≤ t ≤ t0.

Figure 5 shows simulation results for different constants Q∗. The asymptotic behav-
ior of R(t) at large times strongly depends on the choice Q∗. The control β makes
H fluctuate around zero and R(t) fluctuate around a constant radius after certain time
T . The radius R(t) stabilizes for T > 75 when Q∗ = 0.8 and for T > 40 when
Q∗ = 1.4.

Although the strategy employed in the proof of Theorem 4.2 is robust, we can do
better by an adaptive control approach, as illustrated in Fig. 6.
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Fig. 4 The effect of different constant β (the fraction of the cell goes into quiescence) on the radius R(t),
the density of live cells Q, and H defined in (2.11). We see that the radius increases for β < β∗ ≈ 0.6
in a and b, converges asymptotically to a constant for β = 0.6 in c, and decreases for β > β∗ in d. Here
µ1 = µ2 = 0.2. The color figure appears in http://dx.doi.org/10.1007/s00285-009-0290-7

Instead of fixing Q∗ in the previous example, we choose Q∗ = Q̂( j A) so that

β(t) =
{

β if Q̂(t) ≥ Q̂( j A)

β if Q̂(t) < Q̂( j A)
(6.1)

where j A ≤ t ≤ ( j + 1)A. Due to the initial control β(t) = 0.5 for t < t0 = A0 and
the control (6.1) at later times, the radius first grows and then stabilizes. The radius
does not fluctuate as frequently as in the previous examples.

A completely different approach to stabilize R(t) is to choose β(t) such that
H ≡ 0, so that R(t) ≡const. The problem with this approach is that β(t) tends in
general to exit the interval (0, 1 −µ1). Nonetheless one can achieve an improved per-
formance by hybrid method which combines this strategy as long as β(t) remains
in the interval (0, 1 − µ1), and then switches to the adaptive control strategy of
(6.1). This is illustrated in Fig. 7 which shows that R(t) stabilizes faster than in
Fig. 6.
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Fig. 5 The simulation results for different constant Q∗ defined in (4.6) are shown. By switching β to be
either β = 0.5 or β = 0.7, the radius R, the density of live cells Q, and H defined in (2.11) oscillate. The
radius oscillates around a larger constant when Q∗ is larger. The color figure appears in http://dx.doi.org/
10.1007/s00285-009-0290-7

7 Conclusion

The growth or shrinkage of a tissue, taken as a sphere {r < R(t)}, depends on a
decision that individual cells make whether to proceed directly from the restriction
point R1 in G1 phase to S phase, or whether to go first into quiescent state. If the
cells are healthy normal, then when the microenvironment is overpopulated, and if
the cells are endowed with full control β = β(t) in some interval β ≤ β(t) ≤ β at
R1, then they can act in a way that will not increase or decrease the tissue’s diameter
by more than a multiplicative constant. Simulations show that this control, when cho-
sen in an adaptive manner, can render R(t) nearly stationary after a relatively short
time. However, if the suppressor gene that is designed to block proliferation when the
microenvironment is overpopulated is mutated, then the radius R(t) may increase to
∞ (this could be interpreted as the onset of cancer), or decrease to 0 (i.e., the tissue
dies out).

These results are based on a multiscale model with two time scales: the usual time
t , and the running time of cells in each phase of the cell cycle. The model equations
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Fig. 6 The simulation result for adaptive Q∗ defined in (6.1) to stabilize the radius is shown. The radius
does not fluctuate as frequently as in the examples shown in Fig. 5. Here β = 0.5, β = 0.7. The color figure
appears in http://dx.doi.org/10.1007/s00285-009-0290-7
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Fig. 7 Instead of switching β according to Q∗ to stabilize the radius, β is chosen to make H close to zero
which implies that the radius stays close to a constant. This strategy shows that R(t) stabilizes faster than in
Fig. 6. Here β = 0.5, β = 0.7. The color figure appears in http://dx.doi.org/10.1007/s00285-009-0290-7

are based on mass conservation for cell populations and on a diffusion equation for
the oxygen. It was assumed that all the cells act in unison at R1. However the results
can be extended to two (or more) populations of cells. For example, suppose one
population of cells is healthy, and co-exists with another population in which APC is
mutated so that all control at R1 is lost for the latter population. In this case, again
R(t) → ∞ under the assumption of Theorem 3.2(i); however under the conditions of
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Theorem 3.2(ii), R(t) will remain bounded from below by a positive constant (rather
than go to zero) due to the healthy cells of the tissue.

In this paper we made the simplifying assumptions that the genetic pathway from
overpopulation signal to cell proliferation is represented by just one gene, namely,
APC, and that the expression level of this gene is unlimited. Future work should strive
to remove or relax these assumptions.

It was assumed in the present paper that the microenvironment is above the hypoxic
level so that cells continue to grow unless they are quiescence. Future work should
include hypoxia signal. This is a situation which on one hand gives rise to angiogene-
sis, prompting supply of oxygen by new blood vessels, and on the other hand signals
to SMAD to block cell proliferation.

Ribba et al. (2006a,b) used their model to study therapeutic approaches to colorec-
tal cancer. We hope to consider such therapies in a future work by means of the model
of the present paper.
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